
This document is part of the Coordination and Support Action CRACKER. This project has received funding
from the European Union’s Horizon 2020 program for ICT through grant agreement no.: 645357.

Deliverable D3.6

New Version of META-SHARE
Software (Update)

Authors: Penny Labropoulou, Miltos Deligiannis,
Juli Bakagianni, Stelios Piperidis

Dissemination Level: Public

Date:

Status:

20 December 2016

Final

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 2 of 20

Grant agreement no. 645357
Project acronym CRACKER
Project full title Cracking the Language Barrier
Type of action Coordination and Support Action
Coordinator Dr. Georg Rehm (DFKI)
Start date, duration 1 January 2015, 36 months
Dissemination level Public
Contractual date of delivery 31/12/2016
Actual date of delivery 20/12/2016
Deliverable number D3.6
Deliverable title New version of META-SHARE software
Type Other (software); Report
Status and version Final
Number of pages 20
Contributing partners ELDA
WP leader ATHENA RC
Task leader ATHENA RC
Author(s) Penny Labropoulou (ATH), Miltos Deligiannis (ATH),

Juli Bakagianni (ATH), Stelios Piperidis (ATH)
Internal reviewers Georg Rehm (DFKI)
EC project officer Susan Fraser (M19-M36), Pierre-Paul Sondag (M01-M18)
The partners in CRACKER
are:

• Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH (DFKI), Germany

• Charles University in Prague (CUNI), Czech Republic
• Evaluations and Language Resources Distribution

Agency (ELDA), France
• Fondazione Bruno Kessler (FBK), Italy
• Athena Research and Innovation Center in Information,

Communication and Knowledge Technologies (ATHENA
RC), Greece

• University of Edinburgh (UEDIN), UK
• University of Sheffield (USFD), UK

For copies of reports, updates on project activities, and other CRACKER-related information,
contact:

DFKI GmbH
CRACKER
Dr. Georg Rehm
Alt-Moabit 91c
D-10559 Berlin, Germany

georg.rehm@dfki.de
Phone: +49 (0)30 23895-1833
Fax: +49 (0)30 23895-1810

Copies of reports and other material can also be accessed via http://cracker-project.eu.
© 2016 CRACKER Consortium

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 3 of 20

Contents	

1	 Introduction 4	

2	 Web framework upgrade 4	

3	 Licensing module updates 4	

4	 Metadata schema updates 5	

5	 Improvements in the search functionality 5	

6	 Annex 6	

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 4 of 20

1 Introduction	
One of the objectives of the CRACKER project is to coordinate and support the
resource sharing activities underpinning high-quality multilingual technology research
and development, and to build bridges with concurrently running activities preparing
multilingual digital service infrastructure(s). Resource sharing builds upon, maintains
and extends the existing META-SHARE resource infrastructure, which is available at
http://www.meta-share.eu and http://www.meta-share.org.

The extended and improved version of the META-SHARE platform (M24) is available
through Github at https://github.com/metashare/META-SHARE/tree/metashare-3.1.1,
and it comes with detailed instructions on how to install, upgrade and use the
software. The actual manual, as presented on github, is annexed to this document.
The current report documents changes and updates of the META-SHARE software
and platform, and concerns the following aspects:

• web framework upgrade
• licensing scheme
• schema updates and improvements
• improved search functionality

During the next months, we will proceed with the migration of the META-SHARE
nodes to the new version of the platform. The migration mechanism to perform the
required conversion of the metadata records has been implemented and the actions
needed are described in the installation manual.

2 Web	 framework	 upgrade	
Since the META-SHARE infrastructure is built upon the Django Web Framework, a
major upgrade has been carried out, migrating from Django V1.3, which is used in
META-SHARE V3.0, to version Django V1.7.11, which solves several security issues
and still has considerable community support.
The relevant unit tests of the infrastructure have been adjusted to the new framework
and run in both SQlite and PostgreSQL databases.

3 Licensing	 module	 updates	
An important ingredient in the META-SHARE infrastructure is the licensing module
that makes clear to LR users the terms under which they can use them.

• Creative Commons licences v4.0 have been adopted for content resources
http://www.meta-share.org/p/91/Licences

• Free and Open Source-Software (FOSS) licences have been adopted for
tools and web services

• META-SHARE NoRedistribution Licences v.2.0 are now available
http://www.meta-share.org/p/91/Licences

• META-SHARE Commons (MSCommons) licences are still available but their
use is discouraged in favour of their CC or NoReD equivalents.

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 5 of 20

4 Metadata	 schema	 updates	
The changes and enhancements of the new META-SHARE version regarding the
metadata schema and the browser reflect requests of resource providers and points
of improvement that have been observed during the operation of the infrastructure.

• Correction of spelling mistakes, mainly in values of elements
• Addition of values for elements
• Change of cardinality from single to multiple for components and elements, as

long as they didn’t create problems for the software operation
• Addition of elements, such as ISLRN which has been introduced as an identifier

especially for language resources (see http://www.islrn.org)
• Replacement of free text values with controlled vocabularies for certain elements

and, more specifically, country, mimetype and language-related elements (e.g.,
documentLanguage), following ISO standards and established practices

• Improvements for the licensing module, in two directions:
o Update of licences (i.e., update of licence values and texts to the CC 4.0 and

MSNoReD 2.0 versions),
o Improvement of the presentation of licensing conditions, by adding two

elements that allow LR providers to include the detailed texts of non-standard
licences and terms of use/service, or point to URL links thereof;

• Improvements of the appearance of metadata records:
o a mechanism for representing the licence and conditions of use in the form of

icons on the browsing page
o highlighting of the attribution text and citation paper for the resource (if they

include such information) on a prominent place in the “view record” page.

5 Improvements	 in	 the	 search	 functionality	
The existing indexing and search functionality has been improved in the following
dimensions:

• the Solr indexer is now endowed with a list of stopwords for English
• the search module is enriched with a query expansion module, which takes

into account relevant synonym lists, alternative forms of frequently used
query terms

• the ranking of the results is now based on field boosting, i.e., it prioritises
fields like resource name, resource short name, resource description, etc.

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 6 of 20

6 Annex	 	

META-SHARE Installation Manual

Executive	 Summary	
This document is a guide for installing META-SHARE V3.1.1. It is intended for
system administrators setting up META-SHARE nodes. It also contains a section on
how to upgrade an existing META-SHARE V3.0.x installation to V3.1.1.

Backing	 up	 META-‐SHARE	
META-SHARE stores the information in two places: a database and a storage
directory. Please follow these instructions to back up both things before any upgrade,
to revert to the previous version in case of problems.
Before backing up, stop the server to prevent database modifications during the
backup process. The server can be stopped using the stop-‐server.sh script.

The storage directory is defined in the STORAGE_PATH variable in the
metashare/local_settings.py file of your current META-SHARE installation.
Create a backup of that directory.
If you are using a PostgreSQL database, you can use the pg_dump command to
create a dump of the META-SHARE database. The database name, host and port
are stored in the DATABASES variable in metashare/local_settings.py.
pg_dump metashare_db_name > metashare_database_backup.sql	

Make sure the database dump you have created has contents (is not empty) and no
error appears. Check the PostgreSQL Documentation: SQL Dump for further details
if needed.
If instead of PostgreSQL you are using the SQLite database, you can just copy the
SQLite file pointed in the DATABASES variable. Be aware that the SQLite database is
not recommended on production servers.

Upgrading	 META-‐SHARE	
If you have an installation of META-SHARE previous to V3.0 and you would like to
migrate your resource descriptions, uploaded resource data, user accounts and
statistics to a new META-SHARE installation, then you should first upgrade to V3.0.x
using the Installation Manual that comes with a V3.0.x release. When you have such
an installation working (at least as a development server), you can follow the
migration instructions to the most recent version in the remainder of this chapter.
Before diving into the actual migration, it should be noted that two META-SHARE
installations on the same machine can interfere with each other if not configured
properly. So in case you would like to upgrade an installation on a single machine,

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 7 of 20

we recommend to shut down the old installation (including the Solr server) first
unless you know what you are doing.
Here are now the steps you should follow for a successful migration:
1. Make sure your META-SHARE-3.0.x instance is stopped.
2. If you have not done it already, go through Backing up META-SHARE_.

3. Follow the Installing META-SHARE_ section on a new directory.

 Note: during the installation you can skip the creation of a database and a role
for PostgreSQL, as you already have one in your current installation.

4. Make sure your META-SHARE instances are stopped (no development server
running).

5. Copy /path/to/old/MetaShareNode-‐3.0/metashare/local_settings.py
to /path/to/MetaShareNode-‐3.1.1/metashare/local_settings.py

6. Edit the local_settings.py. Add a SECRET_KEY variable and a
ALLOWED_HOSTS variable. See Local Settings for META-SHARE Nodes_ for
information on how to generate it.

7. If you migrate from V3.0.x to V3.1.1, then you have to upgrade your metadata
descriptions to the new version of the META-SHARE xsd schema, that is
META-SHARE xsd schema V3.1. Hence, go to the
/path/to/local/MetaShareNode/ folder and run: :

 ./misc/tools/migration/to_3_1/migrate_to_3_1_MS_schema.sh

8. Collect static files to the STATIC_ROOT folder by running the command: :: source
venv/bin/activate python manage.py collectstatic deactivate

9. Adapt any customization you had on the old start-‐server.sh, stop-‐
server.sh scripts into the new script version.

10. Start your new META-SHARE instance using the start-‐server.sh script.

Installing	 META-‐SHARE	
This section explains how to download and install META-SHARE V3.1.1 and its
dependencies.
Start by downloading META-SHARE from the download page.
Extract the downloaded software into a designated META-SHARE folder, e.g.,
/path/to/local/MetaShareNode/.

Software	 Dependencies	

Database	 Software	
Note: if you just want to run META-SHARE in development mode, or if you are
upgrading META-SHARE you can skip the database setup.

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 8 of 20

We currently use SQLite or PostgreSQL as our database software. SQLite comes
built-in with Python 2.7. Since SQLite has a number of limitations, including missing
transaction management and access permission management, the preferred
database is PostgreSQL. We have tested PostgreSQL 9.0.5.

On Debian, Ubuntu and derivatives:
Install PostgreSQL with:
sudo apt-‐get update	
sudo apt-‐get install postgresql postgresql-‐contrib	

Create a user named metashare_user (choose any name you like) for META-
SHARE:
sudo su – postgres	
createuser -‐W metashare_user 	

Create a database metashare_db (or any other name), owned by the just created
user metashare_user (or the name you chose above):
sudo su – postgres	
createdb -‐-‐owner=metashare_user metashare_db	

Python	 interpreter	
Note: If you are upgrading from a previous META-SHARE installation AND python-
2.7 was installed during the previous installation in
/path/to/old/MetaShareNode3.0/ please make sure to remove from your PATH
variable /path/to/old/MetaShareNode3.0/opt/bin. No path modifications are
required anymore.
META-SHARE V3.1.1 requires Python 2.7. Most Linux/Unix distributions come
already with a preinstalled version of Python. You may check the installed python
version with python2 -‐-‐version.

In case the output is something like "2.7.x", nothing else needs to be done.
If you have a previous python version, python 2.7 will be installed to
/path/to/MetaNode/opt during the META-SHARE installation. To do so, you will
need to install some dependencies, such as libsqlite3-‐dev, libssl-‐dev and
zlib1g-‐dev. Please note that these packages may have different names depending
on your Linux/Unix distribution.
On an older Ubuntu without Python 2.7 you might also use the following command to
get all required build dependencies:
apt-‐get build-‐dep python2.6	

Python	 Modules	
Since V3.0.3, META-SHARE does not bundle anymore all the python dependencies.
Instead of doing that, we follow the standard way of working with python apps, based
on virtualenv and pip. Virtualenv allows us to create isolated python environments,
preventing conflicts between coexisting python applications with different
dependencies. Pip is the recommended tool to install python packages.

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 9 of 20

The psycopg2 python module is used for connecting PostgreSQL to META-SHARE.
In order to build this module, header files for the PostgreSQL library libpq5 have to
be installed, as well as the python headers. On Debian, Ubuntu and derivatives, this
can be achieved installing the libpq-‐dev and python-‐dev packages using apt-‐get
install libpq-‐dev python-‐dev.

Since V3.1. we use the lxml XML toolkit. lxml requires libxml2 and libxslt to be
installed. To install the required development packages of these dependencies on
Debian, Ubuntu and derivatives use apt-‐get install libxml2-‐dev libxslt-‐dev

Once this header files are installed, the rest of the dependencies can be installed
simply by:
cd "/path/to/local/MetaShareNode/"	
./install-‐dependencies.sh	

This script will:
1. Check that Python 2.7 is installed, or download and install it to

/path/to/local/MetaShareNode/opt/bin.
2. Download virtualenv
3. Create a virtual environment at /path/to/local/MetaShareNode/venv.
4. Download, build and install all META-SHARE dependencies using pip in the

created virtual environment.
If everything is installed successfully the message Installation of META-‐SHARE
dependencies complete. should appear in the end.

For your information, the dependencies and their respective versions are listed in the
requirements.txt file.

Web	 Server	
Note: if you just want to run META-SHARE in development mode, you can skip the
web server setup.
META-SHARE is a web application that builds on a web server. Deployment has
been tested with lighttpd 1.4.33 via FastCGI. Other web servers can be used,
but you do so on your own risk.
We strongly recommend to set up your web server so that it only serves SSL
encrypted connections. We are shipping a sample configuration for lighttpd under
metashare/lighttpd-‐ssl.conf.sample which should give you an idea on how to
set this up.

Development	 Server	
To verify that you have installed all dependencies correctly, you should first set up a
development server. Proceed as follows.

1. Create local_settings.py for your local META-SHARE node:

 cp metashare/local_settings.sample metashare/local_settings.py

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 10 of 20

 Edit at least the following constants: DJANGO_URL, DJANGO_BASE,
STORAGE_PATH, STATIC_ROOT, DEBUG, SECRET_KEY, ADMINS, DATABASES, and
EMAIL_BACKEND. More information is available in Local Settings for META-
SHARE Nodes_

 Note: If you are upgrading from a previous META-SHARE version, make sure
to NOT use your production STORAGE_PATH or your production database in
local_settings.py for testing the installation.

2. Initialize database contents:

 source venv/bin/activate # enables META-‐SHARE virtual environmen
t
python manage.py migrate
deactivate # disables META-‐SHARE virtual environment

3. Create an admin user: :

 source venv/bin/activate
python manage.py createsuperuser
deactivate

4. Start an Apache Solr server for the search index (uses Java and Python
internally):

 metashare/start-‐solr.sh

5. Run tests to check that Django can load and serve META-SHARE:

 source venv/bin/activate
python manage.py test repository storage accounts sync stats bc
p47
deactivate

 This should return “OK”.

 Note: This step may take a few minutes.

6. Run a Django development server:

 source venv/bin/activate
python manage.py runserver
 Validating models...
 0 errors found
 Django version 1.4.x, using settings 'metashare.settings'
 Development server is running at http://127.0.0.1:8000/
 Quit the server with CONTROL-‐C.
deactivate

Congratulations: you have successfully started a META-SHARE V3.1.1 node in
development mode. This means that all required Python and Django dependencies
are functioning correctly.

Local	 Settings	 for	 META-‐SHARE	 Nodes	

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 11 of 20

Note: If you are upgrading a META-SHARE installation, you can now follow the rest
of the Upgrading META-SHARE_ instructions as the local_settings.py file will be
copied from the previous META-SHARE installation.
Django projects usually store all their configuration settings in a file named
settings.py. For META-SHARE, we have split up the set of configuration parameters
into two groups: local and global settings. You should never have to change the
global settings in settings.py as they are neither security-critical nor node-
dependant. You can and partially have to change local configuration settings, though,
which are stored in their own file named local_settings.py.

The META-SHARE software package only contains a file named
local_settings.sample that lists and explains all local settings available for
META-SHARE nodes. You have to create a node-local copy of this sample file with
the name local_settings.py and adapt some configuration settings.

The local settings are the following:

• DJANGO_URL = 'http://www.example.com/path/to/metashare'

 The URL for this META-SHARE node as it is reachable from the internet; it is
important to emphasize that this must not be any internal URL which is only
reachable behind some proxy server! Do not use a trailing slash (/)!You can use
http://127.0.0.1:8000 when running a development mode server.

• DJANGO_BASE = 'path/to/metashare/'

 The base path under which Django is deployed at DJANGO_URL. Use a trailing
slash(/). Do not use a leading slash, though. Leave empty if META-SHARE is
deployed directly under the given DJANGO_URL.

• FORCE_SCRIPT_NAME = ""

 This is required when the META-SHARE node is deployed using FastCGI and
for example lighttpd. There is a known bug with FCGI hosted applications and
lighttpd; it basically messes up the URL after HTTP submits.
FORCE_SCRIPT_NAME= "" fixes the issue and hence is required for lighttpd use.

• ALLOWED_HOSTS = ['www.example.com']

 A list of strings representing the host/domain names this META-SHARE
instance can be served at.

• STORAGE_PATH = '/path/to/storage/path'

 Absolute path to the local storage base, i.e., the folder in which your language
resource data is stored. You need to supply an existing path here, even for
development mode! This folder will contain data related to your language
resources, so choose a suitable location that is accessible, safe and that has
sufficient free space for all resource data that you would like to upload.

• STATIC_ROOT = '/path/to/static/path'

	 Absolute	 path	 to	 the	 directory	 where	 collectstatic	 will	 collect	 static	 files	 for	 deployment.	

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 12 of 20

• DEBUG, TEMPLATE_DEBUG, DEBUG_JS

 Debug settings: setting DEBUG=True will give exception stacktraces on the
website, for example. This may include sensitive information, so use with care,
preferably only for local development servers.

• SECRET_KEY

 Set this variable to a random value. This is used by django to salt the
passwords stored in the database and generate tokens. See SECRET_KEY
django documentation for further information. The following python code can
help you to generate a random string:

	 # From: https://gist.github.com/mattseymour/9205591	
import string, random	
chars = ''.join([string.ascii_letters, string.digits,
string.punctuation]).replace('\'', '').replace('"',
'').replace('\\', '')	
print ''.join([random.SystemRandom().choice(chars) for i in
range(50)]) 	

• ADMINS

 Configure the administrators for this Django project. If DEBUG=False, all errors
will be reported as e-mails to these persons. If you do not set any administrators
here, you will

(a) not get any notifications of problems with the META-SHARE site; and (b)
not be able to get useful feedback from the META-SHARE technical
helpdesk if you should run into internal server errors 500).

• DATABASES

 Configures the database settings for Django. For SQLite, use the following
settings:

 DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': '{0}/testing.db'.format(ROOT_PATH)
 }
}

 For PostgreSQL, the following settings are required:

 DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'metashare',
 'USER': 'db_user',
 'PASSWORD': 'db_password',
 'HOST': 'localhost',
 # Set to empty string for default.
 'PORT': '',

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 13 of 20

 }
}

• EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'

 Settings for sending mail. Production servers should use the SMTP e-mail
backend as indicated in the local_settings.sample file.

• TIME_ZONE = 'Europe/Berlin'

 Local time zone for this installation.

• SYNC_USERS = {'sync-‐user-‐1': 'some_password', }

 Credentials (user name and password) for one or more user accounts with the
permission to access synchronization information on the configured META-
SHARE Node. If you are no META-SHARE Managing Node, then you will only
need at most sync user account here. Such an account is required for linking
your node to the META-SHARE Network – see Linking your Node with the
META-SHARE Network_. Essentially a sync user account is a normal user
account and therefore it also lives in the same namespace. Thus, a sync user
account must have a different name from any existing user accounts! You
always have to run manage.py syncdb, whenever you change the SYNC_USERS
setting.

See also Search Engine Optimization and Web Analytics_ for further settings that
can be used in the context of web analytics.
Note: settings changes will only take effect when the Django server is restarted!

Deployment	
Static	 files	
In deployment the static files should be gathered to a single directory, i.e the
directory you set in the STATIC_ROOT setting. To collect all the static files run the
management command: :: source venv/bin/activate # enables META-SHARE virtual
environment python manage.py collectstatic deactivate # disables META-SHARE
virtual environment

Deployment	 Server	
For deployment, we assume that you have downloaded and installed the lighttpd web
server (see also I Want to use MySQL and/or Apache_) and a PostgreSQL
database. You have to adapt start_server.sh and stop_server.sh with correct
IP addresses and port numbers. The IP addresses should be identical to the one you
added to your lighttpd.conf, the port number, of course, needs to be different
from the web server’s.
You can test your PostgreSQL database by calling manage.py syncdb; this will
complain if it cannot properly access the database.
Once both the web server and the database are ready, use start_server.sh to
start the threaded production server via FastCGI; don’t forget to set DEBUG=False!

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 14 of 20

stop_server.sh of course stops the FastCGI server and the corresponding lighttpd
process.
Note: the start_server.sh script automatically installs some cronjobs which are
required for the automatic synchronization of linked nodes, for periodic database
cleanups, etc. The stop_server.sh script automatically uninstalls these cron jobs
again.

Solr	 Server	 for	 Browsing	 and	 Searching	
The META-SHARE release comes with a pre-configured Solr server used to index
the META-SHARE database for browsing and searching.
To start the preconfigured Solr server, go to the metashare folder and run:

./start-‐solr.sh

To stop a running Solr server, go to the metashare folder and run:

./stop-‐solr.sh

These commands must be run by hand for the development server; they are included
in the start-server.sh and stop-server.sh scripts used for the deployment server.

This should be all you need for usual operation. The following subsections are
required only for people who want to understand in depth how to operate and
configure the Solr server.

Installing	 Solr	
1. Make sure you have Java 1.6 or later (run java -‐version to check!).
2. Download the latest version of Solr from here.
3. Unzip into a folder, henceforth called $SOLR_DIR.

4. Go to misc/solr-‐config-‐sample in your local META-SHARE-Software
repository and run:

 ./create_solr_config.sh "$SOLR_DIR"

 This will configure your Solr server with a sample configuration. It will overwrite
the default Solr configuration. After this step you will have a Solrserver which is
configured with two cores (→ indexes) main and testing.

5. Change directory to $SOLR_DIR/example.

6. Run

 java -‐jar start.jar

7. Open a web browser and go to http://localhost:8983/solr/main/admin/.
You should be able to see Solr’s admin interface for the main core.

 For further help go to the Solr Tutorial page.

Keeping	 the	 Solr	 Configuration	 Up-‐to-‐Date	

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 15 of 20

As development on the search functionality continues, you may have to occasionally
recreate your Solr configuration. Before doing that you have to shut down your Solr
server (Ctrl+C). Now you can either:

• Follow the steps in the previous section. This will erase all your index data. After
that, run python manage.py rebuild_index to rebuild your index from the
current database content.

• Or you manually update the Solr configuration by going through the following
steps.

Manually	 Updating	 the	 Solr	 Configuration	

1. Create Solr schema files automatically by running:

 source venv/bin/activate
python manage.py build_solr_schema
deactivate

 The XML output of this command should go into both
$SOLR_DIR/example/solr/main/conf/schema.xml and
$SOLR_DIR/example/solr/testing/conf/schema.xml.

2. If there should be any changes in the files in misc/solr-‐config-‐sample, then
copy these files to both $SOLR_DIR/example/solr/main/conf and
$SOLR_DIR/example/solr/testing/conf.

3. Restart the Solr server.

4. If you already have any data in your database, then manually build the search
index once. Run:

 source venv/bin/activate
python manage.py rebuild_index
deactivate

 Any future changes and additions to your database should automatically be
reflected in the search index. A manual rebuild should not be required anymore
(except when working on the indexing itself).

Linking	 your	 Node	 with	 the	 META-‐SHARE	 Network	
Overview	
META-SHARE aims to provide an infrastructure that makes language resources
available in a network of many META-SHARE Nodes, the META-SHARE Network. A
number of nodes with certain technical and organizational characteristics undertake
the role of META-SHARE Managing Nodes. Such nodes harvest and store metadata
records from the META-SHARE Nodes of the entire META-SHARE Network. META-
SHARE Managing Nodes share metadata, create, host and maintain a central
inventory which includes metadata-based descriptions of all language resources
available in the distributed network. Each META-SHARE Managing Node effectively
hosts a copy of the central inventory.

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 16 of 20

To actually link your META-SHARE Node installation with the META-SHARE
Network, your node has to be proxied by a META-SHARE Managing Node. In Step-
by-Step Instructions_ are detailed the steps that are required for this.

Step-‐by-‐Step	 Instructions	
These are the steps which are required for linking your META-SHARE node with the
META-SHARE Network:

• In order to give permission to a META-SHARE managing node to harvest your
records, you have to create a sync user by running the following command:

	 source venv/bin/activate	
python manage.py createsyncuser	
deactivate	

With this credentials the Managing node is authenticated to request your node
records, harvest them and spread them to the entire record.
• Give the account credentials of your sync user and your public node URL (e.g.,

http://you.example.org/metashare) to the system administrator of the
META-SHARE Managing Node which shall proxy your META-SHARE node.

• Contact either the administrator at CNR, DFKI, ELDA, FBK or ILSP (current
META-SHARE Managing Node providers); never go to more than one of these
META-SHARE Managing Nodes. You can use the contact form at
<MANAGING_NODE_URL>/accounts/contact/ – for example,
http://metashare.ilsp.gr:8080/accounts/contact/.

• The system administrator of the chosen META-SHARE Managing Node will set
up her node as a proxy for your resource descriptions.

• If all went as expected, then the chosen META-SHARE Managing Node will
automatically synchronize with your node and people will be able to see (not
edit!) your resource metadata on all META-SHARE Managing Nodes of the
META-SHARE Network.

Importing	 and	 Exporting	 Resources	
Metadata descriptions of language resources can be imported into the META-
SHARE software from XML files obeying the META-SHARE schema format.
Likewise, the metadata descriptions in the META-SHARE database can be exported
into XML files in the format defined by the META-SHARE XML schema.

Importing	 XML	 Files	 into	 META-‐SHARE	
There are two possibilities of importing language resource XML descriptions which
are outlined in the following sections.
In general, all files to import should be schema-valid according to the current META-
SHARE XML schema file which is located in misc/schema/v3.1/META-‐SHARE-‐
Resource.xsd. Please use an XML schema validator to verify that the import files
are valid before trying to import them into META-SHARE. For example, you can use
xmllint like so:

xmllint -‐-‐schema META-‐SHARE-‐Resource.xsd data.xml

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 17 of 20

Schema validity is not strictly required by the importer; reasonable efforts are made
to import partial or erroneous XML files. However, in order to avoid loosing data,
please try to make your files schema valid.

Importing	 from	 the	 Command	 Line	
META-SHARE comes with a tool called import_xml.py to import XML files
describing language resources into the system. To import, run import_xml.py as
follows:

source venv/bin/activate
cd metashare
python import_xml.py <file.xml|archive.zip> [<file.xml|archive.zip>
…]
deactivate

In other words, you can provide one or more individual XML files or zip files
containing XML files. The script will print a summary count of successfully imported
and erroneous files at the end.

Importing	 from	 the	 Editor	
An alternative way of importing resources is provided by the “Upload” menu item of
the editor. There you can also provide individual XML files or zip files containing XML
files. Compared to the shell importer, the upload size is limited, though.

Exporting	 XML	 Files	 from	 META-‐SHARE	
META-SHARE aims to be an open platform and therefore allows for the export of
resources in the original XML format. As with the import, there are two possible ways
for exporting, both of which are described in the following sections.

Exporting	 from	 the	 Command	 Line	
The script export_xml.py will export all entries from the database into a zip archive
containing one XML file per resource. The script requires a valid META-SHARE
V3.1.1 database. It can be run as follows:

source venv/bin/activate
cd metashare
python export_xml.py <archive.zip>
deactivate

The resulting archive is suitable for import in any META-SHARE V2.1 (or later)
installation.

Exporting	 from	 the	 Editor	
As an alternative to the shell exporter you may export resource descriptions from the
editor.
• A single resource XML description can be exported from the main editor page of

the resource using the “Export Resource Description to XML” button at the top
of the page.

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 18 of 20

• A bundle of freely selectable resources may be exported as a zip archive from
the “Editable Resources” page using the “Action” menu. The resulting archive is
suitable for import in any META-SHARE V2.1 or later installation.

Copying	 Data	 between	 META-‐SHARE	 Nodes	
Since V3.0, META-SHARE supports the automatic synchronization of metadata
between a configurable set of META-SHARE nodes. You should usually not
manually copy resource descriptions by exporting and importing. An exception might
be the case where you would like to create a brand new resource description which
is very similar to an existing resource description.

Setting	 up	 Editor	 User	 Accounts	
For information on how to set up and manage user accounts, please see the META-
SHARE Provider Manual.

Search	 Engine	 Optimization	 and	 Web	 Analytics	
META-SHARE integrates the most common techniques for Search Engine
Optimization (SEO). In order to check whether SEO works as it should, META-
SHARE also integrates “django-analytical”, a package for easily integrating analytics
services like Google Analytics or Clicky. If you would like to use an analytics service,
then just add the corresponding configuration to your local_settings.py file. Valid
configuration options for the supported analytics services can be found here.
Note: since META-SHARE V3.0.1 we ship with a common Google Analytics tracking
code for all META-SHARE websites. The tracking code is activated by default in
metashare/templates/base.html. If you wouldn’t like your META-SHARE
installation to be tracked, you can remove the Google Analytics JavaScript snippet
from this template. You also have to remove the snippet if you would like to use your
own Google Analytics tracking code via django-analytical!

Frequently	 Asked	 Questions	
This section compiles a number of the most frequently asked questions.

I	 Want	 to	 use	 MySQL	 and/or	 Apache	
It may be possible to get these to work, but we have not tested these configurations
and therefore cannot provide any support for them. The recommended database and
web server technologies are listed in Software Dependencies_.

I	 Need	 Help	 Configuring	 lighttpd	
The release includes a sample lighttpd.conf configuration file under
metashare/lighttpd-‐ssl.conf.sample (or metashare/lighttpd-‐
ssl.conf.sample for the non-SSL variant) which you can use as the basis for your
configuration. More information on how to properly setup lighttpd with FastCGI
support can be found in the Django documentation.

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 19 of 20

Also, look at the scripts start-‐server.sh and stop-‐server.sh which should show
you how to start up and shut down the production server.

I	 am	 Getting	 Storage	 Errors	 when	 Importing	 or	 Saving	

File "/usr/local/MetaShareNode/metashare/../metashare/storage/models
.py",= line 254, in save
mkdir(self._storage_folder()) OSError: [Errno 2] No such file or dir
ectory:
'/home/storage/b557040eff1d11= e09075080027fee6a9b7ffe41433e94b19844
c6038a825a145'
File "/usr/local/MetaShareNode/metashare/../metashare/storage/models
.py",= line 254, in save
mkdir(self._storage_folder()) OSError: [Errno 2] No such file or di
rectory:
'/home/storage/b557040eff1d11=e09075080027fee6a9b7ffe41433e94b19844c
6038a825a145'

The first thing to verify is whether the STORAGE_PATH setting in local_settings.py
points to a valid and existing folder – see Local Settings for META-SHARE Nodes_
for details.

Why	 Can	 Django	 not	 Serve	 the	 Static	 Files?	
While in principle, Django could also serve those static files, this is not recommended
for production use – it makes a lot more sense to have a dedicated, lightweight web
server handle that task. Some more information on combining Django and lighttpd is
available here

PostgreSQL	 Error	 Message	

-‐-‐-‐ File "/usr/lib/python2.7/site-‐packages/django/db/backends/postgr
esql_psycopg2/base.py", line 24, in <module>
raiseImproperlyConfigured("Error loading psycopg2 module: %s" % e) d
jango.core.exceptions.ImproperlyConfigured:
Error loading psycopg2 module: No module named psycopg2 -‐-‐-‐

Seems like you are trying to use PostgreSQL but you have not installed the
psycopg2 dependency. See Python Modules_ for how to install it.

Problems	 with	 Importing	 XML	 Files	
We are trying to use import_xml.py to import XML files into the database. We are
using an XML file that validates against the schema, but we get the following error:

source venv/bin/activate
python import_xml.py ApertiumLMFBasqueDictionary.xml
deactivate

Importing XML file: "ApertiumLMFBasqueDictionary.xml"
Could not import XML file into database!

If you encounter this error, please first check that the XML file is indeed schema-valid
with respect to the latest schema files. If so, there might be a bug – please send us

CRACKER

D3.6: New Version of META-SHARE Software (Update)

Page 20 of 20

the example file if possible so that we can reproduce and fix it: helpdesk-
technical@meta-share.eu

Updating	 the	 GeoIP	 Database	 for	 Statistics	 Collection	
The country-based statistics do not seem to properly work anymore.
For statistical purposes, META-SHARE collects information about the country of
origin of web site visitors. In this process, the IP address of the visiting user is
converted to the country using the GeoLite Country database. As IP address to
country mappings may change over time, an automatically set up cron job updates
the used database every month for better statistics results.
The current version of the database is downloaded into the directory
/path/to/local/MetaShareNode/metashare/stats/resources/ using the
following resource file (which is configurable in settings.py via the
GEOIP_DATA_URL key):
http://geolite.maxmind.com/download/geoip/database/GeoLiteCountry/GeoIP.dat.gz

Funding	
This work has been co-funded by the European Union's Horizon 2020 program for
ICT through grant agreement no.: 645357 (Coordination and Support Action
CRACKER). The initial versions of the META-SHARE software have been co-funded
by the 7th Framework Programme of the European Commission through the T4ME
grant agreement no.: 249119.

